Option
Description
DHCP/APIPA
Enables or disables static or dynamic IP addressing by
connection to a DHCP server (default = disabled). When
enabled, the instrument gets an IP address and subnet
mask automatically when power is applied.
If a DHCP server is not available, the instrument uses
APIPA for an IP address and subnet mask.
• APIPA IP address range: 169.254.0.0 to
169.254.255.255
• Subnet mask: 255.255.0.0 (Class B network)
IP Address
For static IP addresses, each LAN-based instrument
must have a unique IP address. Range: 169.254.0.0 to
169.254.255.255 (default = 169.254.1.2).
Subnet Mask
Instruments of the same type that communicate with a
single software package (i.e., FMS) use the same
subnet mask (default = 255.255.0.0). Range: 0 to 255,
integer only.
Server Port
ModbusTCP server listen port (default = 502). Range:
0 to 65535, integer only.
Client Port
Not available (disabled)
Gateway
Router or access point to another network (default =
169.254.1.5)
Remote Server
Not available (disabled)
IP
Ethernet
Sets the Ethernet protocol to Modbus or FXB.
Protocol
2. For Ethernet units with the analog output feature, refer to
the LAN settings through a network
Ethernet settings.
3. Click Save Settings to save the changes.
Configure the LAN settings through a network
1. In the setup utility software, select the LAN Setup tab. The software
looks for LAN instruments. The LAN instruments found are shown.
16 English
Configure
on page 16 to configure the
2. Select an instrument to show the LAN instrument settings.
3. Change the LAN settings. Refer to the options table in
Ethernet settings
on page 15.
4. Click Save Settings to save the changes.
Do an analog output test
For instruments with the analog output feature, do an analog output test.
1. Connect the analog outputs to the load resistors of the data
acquisition system.
Note: As an alternative, install a set of load resistors with 0.1% accuracy and
at least 0.25 W capability across the analog output. Load resistor values of
100, 250 or 500 ohms are typically used.
2. Let a tiny amount of particles flow through the instrument to get a
count in the test channel.
Note: One method to get counts is to use a zero count filter, and put a pin-hole
in the tubing that is between the filter and the instrument.
3. On the Basic Setup tab of the setup utility software, temporarily set:
• Count Cycles—1
• Sample Timing: Hold—10 seconds or more
4. Click Save Settings.
5. Select the Data Display tab, then click Monitor if shown so the data
shown can update continuously as each sample is taken.
6. Click Sample if shown to start sample collection.
7. When the Status value changes from "Count" to "Stop", measure the
voltage across the load resistors for each channel. Also note the
counts shown in the display for each channel.
8. Use the equation that follows to calculate the expected voltage from
the counts shown. Make sure that the measured and calculated
voltages agree.
Voltage = (((SC ÷ FC × 16) + 4) ÷ 1000) × RL
Where:
SC = sample count at the end of the sample period
FC = full-scale channel count. Refer to the analog settings in the
setup utility software.
Configure the