Face F: as indicated by the label to be removed, the 1" cap next to the
word "IN" on face C has a dual function: in the case of horizontal installa-
tion, the outlet that is closed by the cap acts as the system's loading door
(see below "loading operations", par. 2.2.3); in the case of vertical installa-
tion, the same outlet can act as the input hydraulic connection (exactly like
the one marked "IN" on face C and as an alternative to it). The other 1" cap
gives access to a second delivery connection that can be used at the same
time as or alternatively to the one indicated with "OUT" on face C. The user
interface panel is composed of a display and a keyboard and its function is
to set the system, query its status and communicate any alarms. The door
closed by 2 screws gives access to a special maintenance compartment:
cleaning of the non-return valve and resetting of the tank preload pressure.
The system can be installed in 2 different configurations: horizontal (Fig.4)
or vertical (Fig.5).
1.1 Description of the Integrated Inverter
The electronic control integrated in the system is of the type with inverter
and it makes use of flow, pressure and temperature sensors, also inte-
grated in the system.
By means of these sensors the system switches on and off automatically
according to the utility's needs and it is able to detect conditions of mal-
function, to prevent and indicate them.
Figure 4
Figure 5
The Inverter control ensures different functions, the most important of
which, for pumping systems, are the maintaining of a constant pressure
value in delivery and energy saving.
• The inverter is able to keep the pressure of a hydraulic circuit con-
stant by varying the rotation speed of the electropump. In operation
without an inverter the electropump is unable to modulate and, when
there is an increase of the request for flow, the pressure necessarily
decreases, or vice versa; this means the pressures are too high at
low flow rates or too low when there is an increased request for flow.
• By varying the rotation speed according to the instantaneous request
of the utility, the inverter limits the power supplied to the electropump
to the minimum necessary to ensure that the request is satisfied. In-
stead, operation without an inverter contemplates operation of the
electropump always and only at maximum power.
For the configuration of the parameters see chapters 4-5.
1.2 Integrated Expansion Vessel
The system is complete with an integrated expansion vessel with a total
capacity of 1 litres. The main functions of the expansion vessel are:
• to make the system elastic so as to protect it against water hammer;
• to ensure a water reserve which, in the case of small leaks, maintains
the pressure in the system for a longer time and spreads out needless
restarts of the system which otherwise would be continuous;
• when the utility is turned on, ensure the water pressure for the sec-
onds that the system takes to switch on and reach the correct rotation
speed.
It is not a function of the integrated expansion vessel to ensure a water re-
serve such as to reduce interventions of the system (requests from the util-
ity, not from a leak in the system). It is possible to add an expansion vessel
with the capacity you prefer to the system, connecting it to a point on the
delivery system (not a suction point!). In the case of horizontal installation
it is possible to connect to the unused delivery outlet. When choosing the
tank, consider that the quantity of water released will also depend on the
parameters SP and RP that can be set on the system (par. 4-5).
GB
ENGLISH
42