12. APÉNDICE: LISTA DE INTEGRALES
∫x
dx = x
/(n+1)
n
n+1
dx/x = ln |x|
∫a
dx = a
/ln a
x
x
∫(ax+b)
dx = (ax+b)
n
∫(ax+b)
dx = (1/a) ln |ax+b|
–1
∫e
dx = (1/a)e
ax
ax
∫baxdx = (1/a)b
/ln b
ax
∫xe
dx = (e
/a2) (ax–1)
ax
ax
∫ln axdx = xlnax – x
∫x
ln ax dx = x
/(n+1) ln ax–x
n
n+1
∫x
ln ax dx = (1/2) (ln ax
–1
∫dx/(x ln ax) = ln |ln ax|
∫cos ax dx = (1/a) sin ax
∫sin ax dx = –(1/a) cos ax
∫sin
ax dx = (x/2)–(sin 2ax)/4a
∫cos
ax dx = (x/2)+(sin 2ax)/4a
∫sinax cos bx dx=
–(cos(a+b)x/(2(a+b))+cos(a–b)x/(2(a–b))) cuando a
∫sin ax sin bx dx = sin(a–b)x/(2(a–b))–sin(a+b)x/(2(a+b))
cuando a
≠b
∫cos ax cos bx dx = sin(a–b)x/(2(a–b))+sin(a+b)x/(2(a+b))
avec a
≠b
∫sin ax cos ax dx = –(cos 2ax)/4a
∫(cos ax / sin ax) dx = (1/a) ln |sin ax|
∫(sin ax / cos ax) dx = –(1/a) ln |cos ax|
∫xsin ax dx = sin ax/a
∫xcos ax dx = (cos ax)/x
∫sinh ax dx = (cosh ax)/a
∫cosh ax dx = (sinh ax)/a
∫sinh
ax dx = (cosh 2ax)/4a–x/2
∫cosh
ax dx = (sinh 2ax)/4a+x/2
∫xsinh ax dx = x(cosh ax)/a–(sinh ax)/a
∫xcosh ax dx = x(sinh ax)/a–(cosh ax)/a
∫tanh ax dx = (ln cosh ax)/a
∫coth ax dx = (ln |sinh ax|)/a
∫tanh
ax dx = x–(tanh ax)/a
∫coth
ax dx = x–(coth ax)/a
Copyright © Lexibook 007
. 1/a(n+1) cuando n≠–1
n
/(n+1)
n+1
)
– (xcos ax)/a
+ (xsin ax)/a
cuando n≠–1
≠b
165